Cooperative learning for robot's social intelligence: a perspective from the iCub project

Lorenzo Natale

iCub Facility
Istituto Italiano di Tecnologia, Genova

Robot's Social Intelligence and Natural Interaction Capabilities with
End User Development
Eu Robotics Forum, Vienna, 11 March 2015

The iCub project

system integration

- Engineering
- Research/science

Autonomous

Friendly (humans)
Perception \& control
Size/Weight/Power Safety

Motivations

Current limitations

- Can an untrained human communicate with the robot?
- Insufficient feedback: humans cannot adapt to the robot
- Problems for perception: detect humans, their intentions, and behave accordingly
- Communication should be: verbal, visual, tactile, behavioral...
- Multimodal, perception (speech, vision touch, force)
- Perception must be robust
- Whole-body
- Seamless, natural interaction
- Backchannels
- Continuous perception
- Reactive behaviors

iit Towards whole body skin

Hands: 104x2
Forearms: 230x2
Upperarms: 380x2

Torso: 440
Legs and feet: 1310x2

Total: 4488 + accelerometers in the palms and arms

fit Towards better human perception

Head pose detection using HOG features and landmarks (Kazemi, Sullivan 2014)

Gesture recognition, using HOF, sparse coding and ML

fit Programming reactive behaviors

Object Detector
Face Detector

fit Programming reactive behaviors

Object Detector
Face Detector

More on coordination

- Example: eye blinks
- Need to notify perception that should ignore frames (this is nontrivial)
- Coordination between actions, gaze, pointing, nodding etc...
- Put that there!

Wrap-up

- Multimodal, robust, perception (speech, vision touch, force)
- Whole-body
- Seamless, natural interaction
- Continuous perception
- Reactive behaviors
- Benchmarking:
- (performance metrics)
- Dataset
- Simulators

- Robots designed for social interaction (hardware and software)

Thank you!

