ERF Workshop on

Robot's Social Intelligence and Natural Interaction Capabilities with End User Development

European Robotics Forum (ERF) 2015

11 Mar 2015 Vienna (Austria)

Amit Kumar Pandey

Aldebaran Robotics, Paris, France

akpandey@aldebaran.com

Rachid Alami LAAS-CNRS, Toulouse, France rachid.alami@laas.fr

Agnieszka Wykowska

LMU, Munich; TUM, Munich, Germany

agnieszka.wykowska@psy.lmu.de

Anna Esposito

Second University of Naples, Italy anna.esposito@unina2.it

Emilia I. Barakova

Eindhoven University of Technology, The Netherlands e.i.barakova@tue.nl

Bruce A. MacDonald

The University of Auckland, New Zealand

b.macdonald@auckland.ac.nz

James P. Diprose

The University of Auckland, New Zealand

jdip004@aucklanduni.ac.nz

Idea: Social robotics being a domain with multidisciplinary experts

Why not bring them together?

Unique workshop:

Session I: **Social Intelligence**(Short Presentations: 30 min)

Session II: Natural Interaction (Short Presentations: 30 min)

Session III: End User
Driven Development
(Short Presentations: 30 min)

Session IV: Geneal discussion and Q&A (with public participation: 25 min)

15 exciting presentations by speakers from 8 countries

On the Sociality of Social Robots: from a Sociology of Knowledge perspective; Michaela Pfadenhauer, Uni. of Vienna, Austria

Mind Reading for Robot's Social Intelligence; Rachid Alami, LAAS-CNRS, France

Cooperative learning for robot's social intelligence: a perspective from the iCub project, Lorenzo Natale, Italian Institute of Technology, Italy

Statements of interests and scope of Socially Intelligent Robots: from the perspective of SIRo-SA topic group of euRobotics; Amit Kumar Pandey, Aldebaran, France

Introductory remarks on the topic "Natural interaction with social robots"; Agnieszka Wykowska, LMU/TUM Munich, Germany, Anna Esposito, Seconda Università di Napoli, Italy

User involvement as key to success for natural HRI with social robots?; Astrid Weiss, TU Wien, Austria

Results of the first experimental loop in Robot-Era Project, Filippo Cavallo, Scuola Superiore Sant'Anna, Italy

Robot Social-Aware Navigation Framework to Accompany People walking Side-by-Side; Alberto Sanfeliu Cortes, Institut de Robòtica i Informàtica Industrial, Spain

Affective and social spoken interaction with robots: the challenges of the evaluation; Laurence Devillers, LIMSI/CNRS - Univ. Paris Sorbonne, France

<<TBA>>; Andrea Bonarini, Politecnico di Milano, Italy

End-User Design of a Robot's Dialogue Behavior, Milan Gnjatović, Megatrend Uni. and Uni. of Novi Sad, Serbia

End-User Development for social therapies; Emilia Barakova, Eindhoven Uni. of Technology, The Netherlands

Intuitive Interfaces for Creating Robot and Character Animation; Katsu Yamane, Disney research, USA

A Human-Centric API for Programming Socially Interactive Robots; James P. Diprose and Bruce A. MacDonald, University of Auckland, New Zealand

Tangible programming of robots for school children; *J. Terken* and *T. Van den Gurp*, Eindhoven Univ. of Technology, The Netherlands

Idea: Is not this

The precautionary measures are:

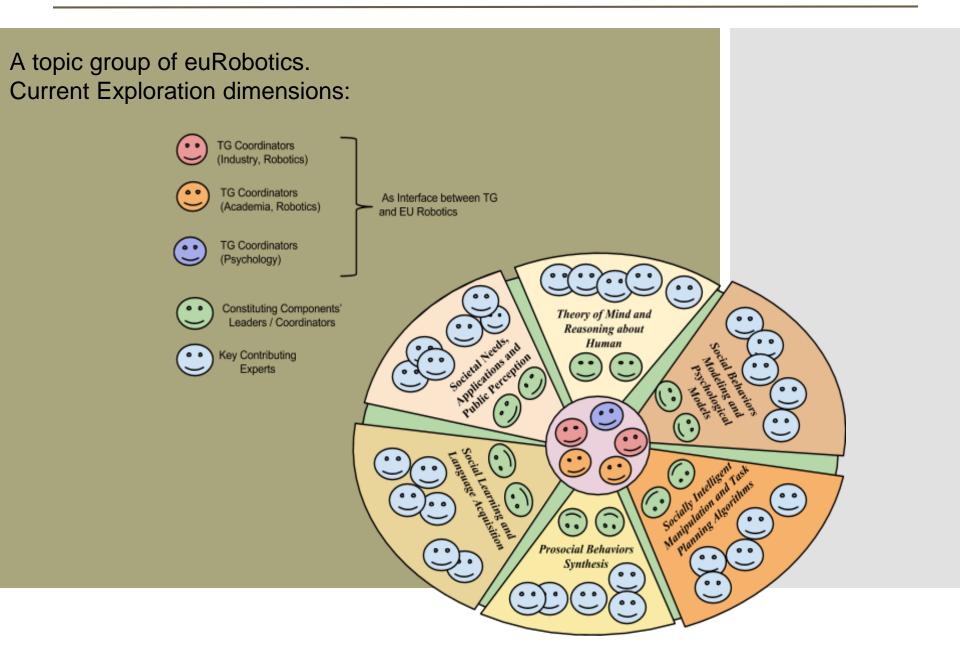
Speakers: Please Introduce
yourself and Please respect
your alloted time slot

Audience: Please <u>keep your</u>

questions for the general

discussion at the end of
session III.

WARNING:


Don't move to the next slide, let others speak

Statements of interests and scope of Socially Intelligent Robots: from the perspective of SIRo-SA topic group of euRobotics

Amit Kumar Pandey, Chief Scientist Aldebaran Robotics (SoftBank Group) France

SIRo-SA: Socially Intelligent Robots and Societal Applications

Bottom Up Development of Robots Social Intelligence

- To facilitate open ended development
- Identify the basic blocks from psychology
- Identify and address R&D challenges for embodiment in robots

• E.g.

Perspective Taking + Affordance + Effort = elevated robot's human-aware reasoning capabilities

- <u>Incorporate</u> with higher level mechanisms of <u>social</u> <u>learning</u> for:
- <u>task semantics</u>, <u>action possibilities</u>, <u>proactivity</u>, <u>grounding</u>, <u>cooperation</u>, etc.

http://fr.linkedin.com/in/amitkrpandey

Socially Intelligent Manipulation, planning and learning

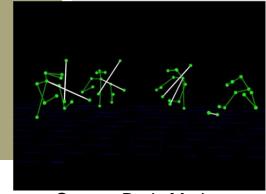
- <u>Semantic perception</u> of objects and learning from human activities
- Application: <u>object handover</u>, <u>task learning</u> from demonstration
- Approach: range sensing, <u>advanced user</u>
 <u>interaction modalities like haptic augmented</u>
 <u>reality</u>, active robot exploration of the
 environment

http://rimlab.ce.unipr.it/Aleotti.html

Social & Affective Robotics: Psychological & Ethical Dimensions of HRI

- Creative <u>multidisciplinary approach</u>:
 Clinical psychology, Social psychology,
 Psychoanalysis, Philosophy
- *Ethics* of autonomous agents
- Affect & Motion (qualitative & quantitative analysis) with and for Social Robots
- Affect, Social Acceptance & Motivation

http://fr.linkedin.com/in/rittabaddoura


Real-time measurement of sensorimotor communication flow

- sensorimotor implicit communication to synchronize multi-agent behavior
- Based on <u>Motion capture and computational tools</u> for quantification of information flow in complex scenarios
 [1]
- <u>Situation Understanding</u>, <u>modeling of Complex group</u> <u>Behaviors</u>, <u>Synthesis of Prosocial Behaviors</u>

Orchestras are the perfect example of group sensorimotor coordination [2]

[1] D'Ausilio, et al., (2012) Leadership in Orchestra Emerges from the Causal Relationships of Movement Kinematics. PLoS ONE 7(5), e35757.
[2] D'Ausilio, et al., (2015) What can music tell us about social interaction?
Trends Cogn Sci 19(3), 111-114.

Quartet Body Motion Capture

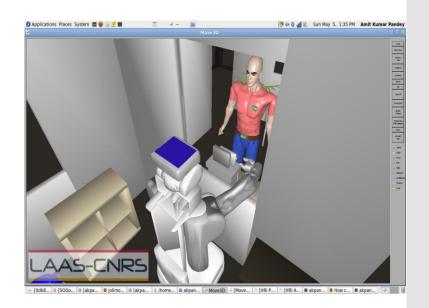
Alessandro D'Ausilio Italian Institute of Technology

Social Robots from a Human Perspective

- The creation and <u>shaping of social robots</u>: by human users
- Motivated by examining the management of social and individual <u>interaction of everyday normative</u> <u>practices and machines</u>, such as <u>mobile</u> <u>communications devices</u>

www.surrey.ac.uk/dwrc

Jointly Edited Publications:


http://www.springer.com/engineering/robotics/book/978-3-319-15671-2; Social Robots from a Human Perspective (forthcoming) Vincent J., Taipale S., Sapio B., Lugano G., Fortunati L. (eds.) Springer http://www.fus.edu/intervalla/ Intervalla Journal (2013) with Satomi Sugiyama (eds.)

Jane Vincent

Visiting Fellow London School of Economics and Politics Science. Visiting Fellow Digital World Research Centre University of Surrey

Socially Intelligent Task planning Keeping Human in the Loop

- Combining <u>symbolic</u> (task) <u>planning</u> with geometric reasoning
- Results in a shared plan (involving human and the robot) for a goal (e.g. let us clean the table) that works in the real world!
- Performance and practicality issues
- •Context: <u>Robot as co-worker</u>, <u>Human-Robot</u> <u>collaborative manipulation</u>

Face-to-face conversation with socially intelligent robots

- <u>Face-to-face conversation + Social</u>
 <u>Intelligence</u>
- Implement models of robot communication <u>based on observations of</u> <u>human behaviour</u>, and validate the models through interactions with humans in real-world settings
- Involves Theory of Mind and Situation Understanding; Multi-Modal Complex Social Behaviors Modeling

http://maryellenfoster.co.uk/

(Proactively) Acting with humans

- How can robots <u>support humans</u> <u>proactively</u>.
- Users don't have to adapt to the machine
- Focusing on <u>understanding of human</u> <u>activities</u> (in a kitchen), <u>human-aware</u> <u>navigation and action planning</u>

www.hci.uni-tuebingen.de

Alexandra Kirsch, University of Tübingen

Social robots and mobile ICTs in everyday life

- Social science + communication and media studies + robotic functions = social robots as media
- Studying <u>Relationship between machines and humans</u>, automation of various aspects of "being human" (e.g., emotions, taste, sociality, etc.)
- Examining robotic functions that are increasingly incorporated into our everyday life in overt and covert ways
- Focusing on <u>societal need, application, and public perception</u>

http://www.fus.edu/intervalla/

Social Robots and Emotions: Transcending the Boundary between Humans and ICTs, co-edited with J. Vincent (publication based on an exploratory workshop among scholars of mobile ICTs, 2013) http://link.springer.com/article/10.1007/s12369-015-0283-1

Recent publication in International Journal of Social Robotics "The Automation of Taste: A Theoretical Exploration of Mobile ICTs and Social Robots in the Context of Music Consumption" co-authored with N. Barile, 2015

Satomi Sugiyama, Associate Professor, Communication and Media Studies, Franklin University Switzerland

Sociatel needs, attitudes and policies for social robots

- Exploring the (supposed) friction between the high societal need for social robots and people's un/willingness to accept social robots.
- Understanding <u>how social robots enter into</u> <u>the domestic sphere</u> (full-fledged robots right off or ICTs gaining increasingly robotic features first)
- Studying <u>which social groups are readiest</u> to adopt social robots
- to politically and publicly support people's engagement with social robots (cf. ICT programmes in the EU in 1990s/2000s.)

Forthcoming in Autumn 2015!

Jane Vincent, Sakari Taipale, Bartolomeo Sapio, Giuseppe Lugano, & Leopoldina Fortunati (eds.) Social Robots from a Human Perspective. Springer.

ASK NAO: A platform for societal application of Socially Intelligent Robots

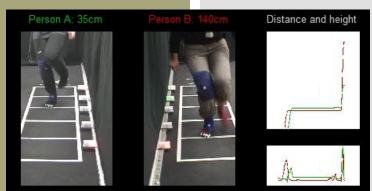
- Interactive, educational web interface and customized NAO applications to engage children with autism
- Enhanced by NAO's cartoony humanoid shape and non-judgemental, tireless, predictable behaviour.
- Incorporates <u>basic theory of mind</u>, <u>task</u> planning, turn-taking...

The second secon

https://asknao.aldebaran.com/

Development of clinically relevant interactive capacities

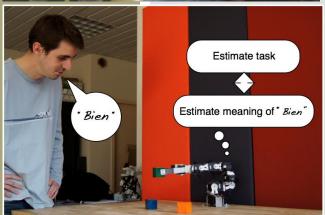
- Autonomous robots (with psychotherapist supervision), assist the therapist in teaching the child.
- Exploring ethical guidelines for deployment of robot-enhanced therapy.
- Fusing turn-taking, imitation, joint attention, Multi-sensory data and interpretation for diagnostic support.
- EC-funded DREAM project (-> 2020).


http://dream2020.eu/

Rodolphe Gelin, Aldebaran

Cognitive processes underlying Human-Human action coordination

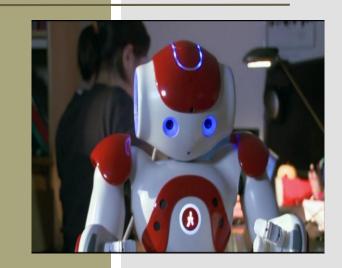
- What <u>cognitive processes influence and</u> <u>establish coordination between two or</u> <u>more human or non-human interaction</u> partners?
- Controlled <u>behavioral experiments with</u> <u>human subjects</u>
- Serves for <u>action planning and</u> <u>prediction</u>, movement adaptation, nonverbal communication, <u>joint task</u> <u>representation</u>, synchronization, intentional/unintentional <u>coordination</u>



https://sites.google.com/site/cordulavesper/

Cordula Vesper
Department of Cognitive Science, Central European University, Budapest

Learning from Interaction in Human-Robot Collaboration

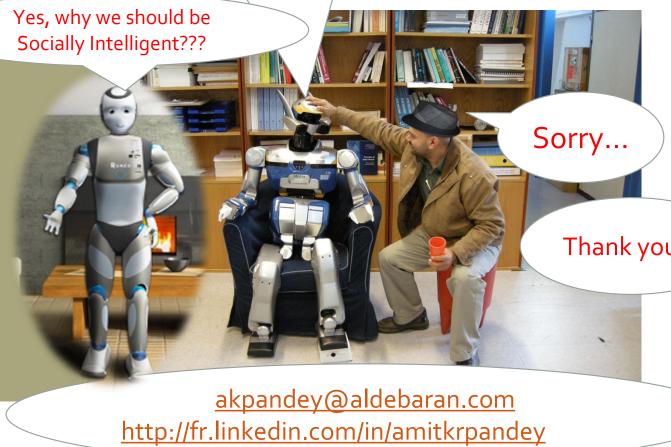

- Social Learning with Active engagement of teacher and learners
- with <u>multiple types of information exchange</u> (demonstrations, feedback, queries, ...)
- Curiosity and active multi-task learning from demonstration for Socially Intelligent
 Manipulation and Task Planning and Prosocial Behaviors Synthesis...

http://3rdhandrobot.eu/ http://flowers.inria.fr

Affective and social dimensions in spoken interactions with humanoid robots

- <u>Towards build a relationship between human</u> and robot
- Creating <u>a generic intelligent user interface</u> providing a multimodal dialogue system with social communication skills including humor, empathy, compassion, emotion.
- <u>Dynamic user profile</u> using personality and interaction dimensions (extrovertion, emotionality,..),

- French ROMEO2 2012-15: Social interaction with Robot: application for dependent people and elderly but also children
- EU CHISTERA JOKER ..2014-117 : Explore advanced dialogue involving complex social behaviors such as humor


Discussion Session:

- Any question on the presentations?
- Any comment/view on Social Robots within (and beyond) the scope of today's workshop?
- Any aspect which the Topic Groups of Natural Interaction with Social Robot and Socially Intelligent Robots and Societal Application should take into account?
- Any aspect the euRobotics and its Multi-Annual Roadmap should consider about social robotics?

• ...

...and then will we be forced to say sorry to an Intelligent robot?

Why don't you, the human, become Robotically Intelligent???

Thank you...